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SECTION I

INTRODUCTION

t Bounded-wave electromagnetic-pulse (EMP) simulators provide one means to

Senerate simulated EMP's for testing the EMP responses of aircraft and missiles

on the system level (ref. 1). A simulator can be designed to launch an electro-

magnetic pulse into the simulator volume which closely approximates the actual

nuclear WM. This ability, however, does not imply that the actual interaction

between the nuclear EMP and the test object is also thereby automatically closely

simulated. In the simulator there exists an additional interaction between the

simulator structure and the test object which is absent in the actual EMP

encounter in free space. This interaction adversely affects the quality of

the simulation. In order to interpret and utilize correctly the simulator

test data, it is necessary to estimate and make allowance for this simulator/

test-object interaction.

This report presents an analytical study of the simulator/test-object

interaction. It employs an idealized model with simplified geometries to keep

the mathematics manageable. The bounded-wave EMP simulator is modeled by a

pair of parallel, perfectly conducting, flat plates of infinite extent, as

depicted in figure 1. Such a structure is an electromagnetic waveguide. Let

the spacing between the two plates be denoted by h . A rectangular coordinate

system can be set up such that the lower plate is at z- 0 and the upper plate

at z-h . The test object is taken to be a hollow cylinder or tube of cross-

sectional radius a and length L .It is considered to be perfectly conducting

and of infinitesimal thickness. The axis of the tube is oriented perpendicular

to the two plates, and can be taken to coincide with the z-axis. The length

L is then of necessity less than h . Let the lower end of the tube be at a

height b above the lower plate.

The tube is a sufficiently simple model of a missile or aircraft structure,

while the infinite plates constitute an idealization of the parallel-plate

section of a bounded-wave simulator. By choosing this idealized model, it is

possible to perform a rigorous and exact formulation of the simulator/test-

object interaction problem which is at the same time not too complicated for an

analytical solution.
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SECTION II

ELECTROMAGNETIC POTENTIALS

The specific goal of this analysis is to calculate the electric current

induced on the cylinder when the parallel-plate waveguide is excited by an

electromagnetic wave. This electromagnetic wave can, for example, be a simu-

lated EMP in the form of the transverse-electromagnetic (TEM) mode of the

waveguide. The effect of the simulator/test-object interaction is estimated

by comparing this induced current with its corresponding value when the cylinder

is excited in free space in the absence of the simulator.

The current induced on the cylinder by an incident electromagnetic wave

in the parallel-plate waveguide can be evaluated by solving an integro-

differential equation. The derivation of this equation requires a considerable

amount of calculation. One first introduces the electromagnetic scalar and

vector potentials V and A for the electromagnetic fields Esc and Bs c

scattered off the cylinder and the plates, such that

A(r,t) VV( (r,t) BSC(r,t) =VxA(r,t) (1)

E at) - .....

In the Lorentz gauge these potentials are related by the Lorentz condition:

_-A(r,t) + 2 -- V(r,t) = 0 (2)-- -- 2 at -
c

and individually satisfy the wave equation:

/ 2 V2 1a 2

V 2  a V(r,t) -0 ( c 2 at 2 A(r,t) 0 (3)

At z- 0 and h , on the surfaces of the two parallel plates, the

tangential components of Esc and the normal component of B sc must vanish.

By writing out equations (1) and (2) in rectangular component form, one can

easily convince oneself that these boundary conditions on the fields imply

the following boundary conditions on the potentials:

_A%



V(r,t) A (r,t) - A (r,t) - 0

x y

(4)

A (r,t) - 0

for z- 0 and h Thus the scalar potential and the tangential components of

the vector potential satisfy the homogeneous Dirichlet boundary condition on

the plates, while the normal component of the vector potential satisfies the

homogeneous Neumann boundary condition.

It will be convenient to go over from the time variable t to a complex

frequency variable s by introducing the Laplace transforms of all time-

dependent quantities. For example, the Laplace transform of the scalar

potential is

V(rs) - dt e V(r,t) (5)

Under this transformation equations (3) become

(V2 -y 2)V(r,s) - 0 , (V 2 2)A(r,s) - 0 (6)

where

-- (7)c

Their solutions can be represented as definite integrals over the surface of

the cylinder:

V(r,is) -_ GD(rr',s)a(r',s)dS'VEs 0 Do - - -

A (r,s) - P 0 f GD(r,r',s)K(r',s)dS'

y - u f G(rs)dS'

Ayr,s) - 10 f GN(r,r',s)K_ (r',s)dS' (8)

6



F

In these expressions, a and K are the surface charge and current densities

induced on the cylinder by the incident wave; GD and GN  are the Green's

functions for the Dirichlet and Neumann boundary-value problems of the parallel-

plate waveguide; and the field position vector r - (x,y,z) stands for a point

in space while the source position vector r' - (x',y',z') stands for a point

on the surface of the cylinder.

The Green's functions G and GN are solutions of the nonhomogeneous
DN

"elmholtz equation:

2 2 3
(V - 2)GD (r,r's) = - 6 (r-r')

(9)
( 2 -Y 2)GN (r,r' ,s) = - 6 3(r-r')

They satisfy, respectively, the homogeneous Dirichlet boundary condition GD = 0

and the homogeneous Neumann boundary condition aG N/3z - 0 on the plates z- 0

and h . In addition they both satisfy the outgoing-wave condition at infinity.

Using standard Green's function techniques, one finds that

GD(rr',s) - U n(,x,y,x',y',s)sin p nz sin p nz'

n-i

(10)

G , = V (x,y,x',y',s)cos pnz cos p z'

n n n n

with

P n h-

and

Un(xYx',Y',s - KR (12)
n

Here K is a modified Bessel function,

R - 4 x-x') 2 + (y-y') 2  (13)

and e is defined by:n

C n  12 n-0(14)

1 n 1,2,3,...

7
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Furthermore, to satisfy the outgoing-wave condition, the branch of the square

root in equation (12) is to be chosen to make

Y 2 + p2(15)+ n

as y+

3



SECTION III

DERIVATION OF INTEGRODIFFERENTIAL EQUATION

The surface charge density a can be eliminated from the calculation by

using the continuity equation:

sa(r,s) + V.K(r,s) - 0 (16)

The independent unknown quantities of the problem are then the two components

of the surface current density K One can set up two integrodifferential

equations for K by applying the boundary conditions on the tangential compo-

nents of the total electric field on the surface of the cylinder. In a standard

cylindrical coordinate system (p,q,z) with polar axis coinciding with the axis

of the cylinder, these boundary conditions are

E n c (rs) + ESC(rs) = 0 , Einc(r,s) + Esc(rs) 0 (17)

z -

for r on the cylinder.

The two integrodifferential equations so derived are generally coupled.

However, for the specific geometry of this problem, it is possible to obtain

from them a single closed integrodifferential equation for the total axial

current I defined as

I(z,s) - a dp K(&P,z,s) (18)
0

The total axial current by itself is often sufficient to characterize the

excitation of a thin cylinder at low frequencies, since in this limit the

circumferential current is small by comparison.

To derive the integrodifferential equation for the total axial current I,

one writes down the first of the boundary conditions (17) in terms of the

potentials:

a -V(r,s) + s A (r,s) - E inc(r,s) (19)
az z z

9



Substituting the integral representations (8) of the potentials into equation

(19) and eliminating the surface charge density a by use of equation (16), one

obtains

a G (-s K,,(r',s) + !- Kz ( r' , s) dS'

(20)

2 rincyI GN r,',s)K (r',s)dS' se E (rs)
j N z

This equation holds for b < z,z' < L+b , with

r (a,Y,z) , r' = (a,',z') (21)

and

f dS' - a f 'f dz' (22)
0 b

It is to be especially noted that, in the cylindrical coordinates, the two

Green's functions GD  and G. depend on the two azimuthal angles cp and V'

only through the cosine of their difference cp -y' , so that

GD(r,r',s) - G,(coscp-y'), z,z',s)

(23)

GN(r,',S) - G(cos(cp-cp'), z,z',s)
NN

This property is of vital importance in the following derivation of the integro-

differential equation for I .

If one integrates both sides of equation (20) over p from 0 to 2W

two important events take place. First, the y'-dependence of the Green's

functions drops out:

d GD(cos(P-cp'), z,z',s) - di GD(cos i, z,z',s)

00

= 2w r D(z,z',s)

10



d(P G, (cos(cp-q'), z,z',s) dt, GNCOS *, z,z',s)

0 ao
= 21 rN(z,z,,s) (24)

IN

Therefore the subsequent T'-integration in equation (20) is carried out solely

on the surface current density components and K . Second, the term in

vanishes after the p'-integration because

f 27r 27r

J cp 1.-- K (r',s) K (r',s) -0 (25)

On the other hand the T'-integration of Kz yields directly the total axial

current I , as defined in equation (18). Gathering together all these results,

one obtains the following nonhomogeneous integro-differential equation for I

L+brLz bdz'r (z,z',s) I(z',s)

_zD 3z'

(26)

2 L inc
- dz'rN(z,z',s)I(z',s) - S Ez  (z,s)

b

where

E nc(z's)= 2 EinC(aq',z's) (27)
z 0T z

-ncThat is, E is the average value of the z-component of the incident electric
z

field around the circumference of the cylinder at a fixed value of z

One should emphasize that equation (26) is an exact equation. No approxi-

mation has been invoked in its derivation. This remarkable, rigorous result

is actually made possible through the judicious choice of the geometry of the

model. If a different geometry ;ere chosen, it is doubtful that a closed

equation for I similar to equation (26) could be derived without the help

of assumptions and approximations.

11



The two functions rD and rN  in equation (26) can be evaluated
explicitly in closed form. Substituting equation (10) into equation (24),

one obtains

rD(z,z,,s) W n (s)sin p nz sin p z'
n-l

M (28)

r (zz',s) = W (s)cos pnz cos z '

n=0n

where

(s (d*-K, (2a Y + sin k
0 n

(29)

whe n 0n 'n 'n

Use has been made of the addition theorem for the cylindrical functions (ref. 2)

in evaluating the integral in equation (29).

12



SECTION IV

REDUCTION TO MATRIX EQUATION

Equation (26) is a second-order integrodifferential equation. It

cherefore requires the specification of two boundary conditions in the

coordinate z for the unique determination of the total axial current I

These boundary conditions can be taken as the two end conditions.

I(z,s) - 0 for z-b and L+b (30)

However, it is often inconvenient to treat the problem in hand directly as a

two-point boundary-value problem for equation (26). For the purposes of

analytical approximation or numerical solution, much advantage can be gained

by combining equation (26) and the boundary conditions (30) and reducing them

to a single matrix equation.

The transition to a matrix equation is achieved by going over to a

discrete system of description. To this end one introduces a complete set

of mutually orthogonal functions over the interval b < z < L+b which

vanish at the two end points z b and L+b . This set consists of the

sine functions sin k (z-b) with
m

k - m -1,2,3,... (31)
m L

These functions can be considered as the orthogonal basis vectors of an infinite-

dimensional vector space. The current I , satisfying the boundary conditions

(30), can be expanded in terms of these basis vectors:

I(z,s) C m(s)sin k (z-b) (32)

The discrete set of expansion coefficients C completely determines Ia

Next, one substitutes equations (28) into equation (26) and obtains

13
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W (@)A (s)sin p 21W (8)B (s)cos zu n l n Un 0  n nn(3 3 )

- se E in (z,s)

where

A (a) - FL zbdin a (34)
n n nz az' I(z',s)

and 4

B (a) - dz'cos Pz'I(z',B) (35)

Performing an integration by parts in equation (34) and making use of equation

(30), one finds that A. and Bnare related:

An(s) p n pB (s) (36)

Substituting equation (32) into equation (35), one has

B a n~ c(s) (37)

where

b

Note that the index n runs from 0 to mwhile the index a runs from

1 to

Equation (33) can be regarded as a vector relation in the infinite-

dimensional vector space. Tae component of this relation along the basis

vector sin kz (-b) can be obtained by multiplying equation (33) by
km

sin k.(2- b) and integrating over z from b to L+ b . The derivative

in the first term is again treated by integration by parts. The result then is

OnkWn WA (s) + 'f2 n W n(S)B n(s) -Dms (39

nin na n-0

14



where

Bh- J dz sin pnz con k,(z- b) (40)

b

and b

n (a) - se I dz sin k (z-b) C (Z's) (41)
30 J z

b

It is not difficult to see that aUm and 8nm are related:

nmk m p nanm (42)

Substituting equations (36), (37) and (42) into equation (39), one obtains

a matrix equation for the expansion coefficients C I

M Mi (S)Ct(s) - Dm(S) (43)
t=l

where

M (a) (y+ (s) za (44
mt O ( n2 +p 2 )W n ant (44)nnO

The matrix K is symetric (HiL M but not Hermitian (Mt ' Mt)

15



SECTION V

APPROXIMATE ANALYTICAL SOLLTION

The matrix equation (43) is a concise and exact formulation of the

simulator/test-object interaction problem. From the standpoint of solving

the problem it is also a convenient starting point. For example, an accurate

numerical solution can always be obtained by using standard methods in numerical

matrix calculus. In the following, however, an approximate analytical solution

will be constructed instead.

The approximation employed below is based on the observation that the

diagonal elements of the matrix M in equation (43) are considerably greater

than the off-diagonal elements. The reason behind this disparity is as follows.

If one examines closely the structure of the matrix element M given in

equation (44), one finds that the combination an ann has the most violent

variation with the summation index a . It has therefore a great effect on

the value of MW . The factor a can be evaluated from equation (38):

a k2 [cos pnb - (- 1 )mcos Pn(L+b)] (45)

~ m 'Pn

It assumes both positive and negative values. In an off-diagonal matrix element

M with m # Z , these positive and negative values of anm and anZ to a

considerable extent mutually cancel out during the summation over n . However,

the situation is different with a diagonal matrix element M . With m - Z2 m
the product anman becomes the square am which is always positive. It

contributes constructively to Mmm , and adds up to a large value. For small

values of m and Z , sample numerical calculations show that the diagonal

elements are one order of magnitude greater than the off-diagonal ones. The

disparity is expected to increase for larger values of m and Z.

This property of the matrix elements is the basis of an approximation

scheme for solving the matrix equation (43). One first rearranges the equation

in the form

Mmm(S)Cm(s) - Dm(s) - I M.t(s)C (s) (46)
Lai
tom

16



The diagonal element M has been taken out from the sum. The remaining

sum contains only off-diagonal elements, and is regarded as a perturbation.

A first approximation to the solution of equation (46) is therefore

D (s)
c(1)m (s) m (47)

me

Successive approximations can be obtained by iteration. For example, the

second approximation is

C(2) D(s) s  C(1) (s) (48)
m Mmms) H(s) IL

In the following sections the solution in the first approximation will be

examined.

17



SECTION VI

COMPLEX-FREQUENCY-PLANE SINGULARITIES

In the first approximation of equation (47) the total axial current

induced on the cylinder is given by

D (s)
(z,s) ~sin k (z- b) (49)

rn-i m

In the time domain this current becomes

1 /;+ j  D! D(s)

I(z,t) - ds est sin k(z-b) (50)snf O(s))

where C is an appropriate positive constant. The value of the integral

is dependent on the singularities of the integrand in the left half of the
complex s-plane. The parameters of these singularities can be used to

characterize the excitation of the cylinder.

The s-plane singularities can be grouped into three classes. The first
class consists of singularities of the factor D . By equation (41) these

singularities are introduced by the frequency dependence of the incident
inc

electric field E n  . The second class consists of singularities of the

factor M . By equation (44) these singularities are contained in the func-

tion Wn  defined in equation (29). From the well-known analytical properties

of the modified Bessel functions, one concludes that these singularities are

branch cuts with b nch aints determined by the vanishing of the argument of

the function Ko( y +pn a) . By equation (7) the branch points are located at

nS -j-- n - 0,1,2,... (51)

along the imaginary axis. They are characteristic of the parallel-plate

waveguide, and depend neither on the length L nor the radius a of the

cylinder. In fact they correspond to the excitation thresholds of the wave-
guide propagation modes. Examples of these waveguide mode singularities are

shown in figure 2.

18
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Figure 2. Branch-Cut Singularities in the Complex-Frequency Plane

Characterizing the Waveguide Modes
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The third class of s-plane singularities consists of the zeros of M
mm

They give rise to poles in the integrand of equation (50), and are determined

by solving the transcendental equation

M MM(s) __21 + P- (s)M om m0 1,2,3,... (52)

The solutions depend on all the parameters h, L and a of the model. They

can be interpreted as the natural frequencies of certain natural modes of the

surface current on the cylinder. For each m , there are two solutions of

equation (52) which form a complex-conjugate pair. They lie in the second

and third quadrants of the s-plane. The natural modes corresponding to these

natural frequencies are the sine functions in equation (50). Thus, in this

approximation, the natural modes are simple sinusoidal currents.

Let the solution of equation (52) in the second quadrant be denoted by
*

sm . The other solution is its complex conjugate sm  in the third quadrant.

Decompose sm  into its real and imaginary parts:

sm  ' 
+ js"'  (53)

m m m l(3

In principle, s' and s" can be obtained accurately by numerical techniques.m m
In the following, however, one will be content with deriving approximate

analytical expressions. The method of approximation will be based on the

assumption that the two poles lie close to the imaginary axis, so that they

can be approximately located by observing their influence on the behavior of

Mmm along the imaginary axis.

On the imaginary s-axis, let

s JW, y jk (54)

where w and k are both real and vary from - to . They are related by

w - kc (55)

20
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The function W can be decomposed into its real and imaginary parts:

n

Wn(iW) - W' (w) + j Wn"() (56)

By equations (15) and (29), one has

(27222 2 k2)

W2'(h) J 0 k a 0 -k n

n

n 7 a)h Y n o na

-- W 1 2( ' a2ek2 2) 57

where J and Y are the Bessel and Neumann functions, and 8 is the unit

step function:

x> 0

OW ((58)
0] x<O0

The square roots in equation (57) are all considered positive.

In a similar manner the value of M along the imaginary axis can bemms

decomposed into its real and imaginary parts:

M (jW) -' (W) + j M" (W) (59)mm MMs m

with

(' W) W + p W'(W)ctn-0 c

M".,m(w) = 2 ( + P 2Wn ) 
(60)

n-0 c

When Jw is close to the solution s of equation (52) in the second quadrant,

M' can be seen to pass through a zero. This property is used to determine
"mR

sm" approximately:

21
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M' (S") - 0 (61)mm m

which is a transcendental equation involving real quantities only. It is

simpler to solve than the original complex equation (52).

A practical technique to solve equation (61) is by iteration. Using

equation (60) one can rewrite it as

r 2 1 (S I

I" nn m nm
s'" = c ml" (62)

The iteration is performed by successively substituting trial solutions into

the right-hand side and deriving improved approximations on the left-hand side.

In the appendix it is shown that, in the infinitely thin cylinder limit, the

solution of equation (62) is simply

s" = kmC = mrc for a
m L f 0 (63)

Fence, for a thin cylinder, one can use this result to start the iteration.

An improved approximation to s" is therefore
m

00-
i~~~ 1 'kca2

sit -0n n m nm

sm = c (64)
1W (k Oa
n_ n nm

The following calculation will be based on this approximate solution of

equation (61).

In the neighborhood of this solution, M' has the following approxi-
mm

mate expansion:

M'(w) =- (w - s") (65)
mm m In
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where s" is given by equation (64) and Q is a real quantity defined by

m m

2s"

nOm W'(kcOat2  (66)c 2n=O nm n

The imaginary part M" has a hump around this solution and can be approximatedmn
by its value at w = kmC

M" () = M" (k C) (67)
nun mm m

Gathering together these results, one finds that the complex function M has
mm

the expansion

M (jW) - - S(-s"+j s') for w s" (68)mm m m m m
where

s'-- M" (k c) (69)
m mn m

m

Equation (68) shows that, in the complex s-plane (jw -* s) , the function

M has a zero at s = s' + j s". Therefore the reciprocal of M has amm m m m mm
pole at the same point. In the neighborhood of this point, one has

(S-S for s sm  (70)

Mm (s) -s )

Similarly, by repeating the calculation in the third quadrant, one finds that

M has a second zero at s , and that
mm

I for s = s (71)
M(s) *mm (s - s*)

In summary, the total axial current on the cylinder given in equation

(49) has the following expansion in the complex s-plane:
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IQz~s) - + 'Y(z'S) (72)

It consists of a sum of simple poles and a remainder term 'V For each

value of m there is a pair of poles situated at

s - S' + j s" and s , s' -js" (73)m m m m m

where s' and s" are approximately given by equations (64) and (69). By
i im

equations (41), (49) and (70), the residue Rm  is

j Dm(s )
%(Z) - sin k (z - b)

m

Ss e L+bin
sink (z- b) dz'sin k (z'- b) nC(z',s ) (74)

in f z inmb

These poles correspond to the natural modes of the cylinder. The remainder

T contains all other contributions from the branch cuts of the waveguide

rmodes as well as whatever singularities the incident electric field may

introduce.
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SECTION VII

NUMERICAL RESULTS

The three quantities s' s" and S1 , characteristic of the simple-pole
m msingularities in the complex s-plane, are given analytically in equations (64),

(66) and (69). In the following they are evaluated numerically as functions

of the geometrical parameters h , a , L and the natural-mode index m . One

takes a case in which the cylinder is situated midway between the two parallel

plates, so that

b - (h-L)/2 and L+b - (h+L)/2 (75)

This is a highly symmetric situation. Accordingly, the quantity a assumes
nm

a simple form:

"os Cos-'2 m odd, n even

2km pL

am 2k m  sin-I-sin-p--- m even, n odd (76)

0 otherwise

Thus a is nonzero only if n and m are of opposite parities.

The numerical calculation is performed for the first six natural modes

(m - 1 to 6) . One picks four values of the ratio a/L

y 0.003, 0.01, 0.03, 0.1 (77)

and three values of the ratio L/h

L
h 0.2, 0.5003, 0.8003 (78)

The results are shown in tables I to 3. They are also plotted in figures 3 to 5.

The odd choices of the last two values of L/h in equation (78) need

immediate explanation. When the ratio L/h is given simple, rational values
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Table 1

POLE SINGULARITY PARAMETERS FOR L/h- 0.2

1s'L s"L
L rc mc 2 cQ

0.003 -0.085 0.935 14.5

0.01 -0.114 0.927 10.9
0.03 -0.162 0.917 7.59

0.1 -0.290 0.918 4.09

0.003 -0.117 1.91 27.0

0.01 -0.160 1.91 19.7
2 0.03 -0.238 1.91 13.1

0.1 -0.460 1.98 6.03

0.003 -0.138 2,90 38.7

0.01 -0.192 2.90 27.7

3
0.03 -0.293 2.91 17.8

0.1 -0.578 3.09 7.16

0.003 -0.154 3.89 49.8

0.01 -0.217 3.89 35.2
4

0.03 -0.337 3.92 21.9

0.1 -0.647 4.22 7.86

0.003 -0.167 4.88 60.6

0.01 -0.238 4.89 42.3
0.03 -0.374 4.94 25.7

0.1 -0.674 5.33 8.30

0.003 -0.179 5.88 71.1

0.01 -0.257 5.89 49.1
6 0.03 -0.406 5.95 29.1

0.1 -0.671 6.42 8.61
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Table 2

POLE SINGULARITY PARAMETERS FOR L/h-0.5003

stL s"L
a m m
L 21c C i

0.003 -0.052 0.952 19.1

0.01 -0.064 0.950 15.5
0.03 -0.081 0.950 12.2

0.1 -0.109 0.963 8.73

0.003 -0.126 1.94 26.7

0.01 -0.174 1.93 19.2
0.03 -0.266 1.91 12.5

0.1 -0.557 1.99 5.35

0.003 -0.094 2.90 49.3

0.01 -0.119 2.91 38.6
0.03 -0.155 2.93 28.9

0.1 -0.186 3.03 18.4

0.003 -0.165 3.93 49.1

0.01 -0.236 3.92 34.1
4 0.03 -0.379 3.93 20.6

0.1 -0.848 4.27 6.47

0.003 -0.117 4.88 76.4

0.01 -0.152 4.90 58.6

0.03 -0.199 4.95 42.3

0.1 -0.176 5.10 25.1

0.003 -0.191 5.92 69.8

0.01 -0.280 5.92 47.4
0.03 -0.458 5.97 27.1

0.1 -0.976 6.61 6.54
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Table 3

POLE SINGULARITY PARAMETERS FOR L/h -0.8003

911, s"'L 2wS

0.003 -0.114 0.956 14.1

0.01 -0.154 0.947 10.4

0.03 -0.226 0.936 7.04

0.1 -0.431 0.952 3.53

0.003 -0.128 1.97 26.9

0.01 -0.177 1.97 19.5
2 0.03 -0.266 1.99 12.8

0.1 -0.504 2.15 5.77

0.003 -0.110 2.97 41.1

0.01 -0.151 2.98 30.0
3 0.03 -0.220 3.01 20.0

0.1 -0.327 3.21 9,50

0.003 -0.061 3.95 77.9

0.01 -0.075 3.96 63.1
4 0.03 -0.090 3.98 49.6

0.1 -0.065 4.04 35.3

0.003 -0.129 4.88 64.6

0.01 -0.180 4.87 46.1
5 0.03 -0.270 4.88 29.2

0.1 -0.447 5.02 10.6

0.003 -0.182 5.86 70.2

0.01 -0.265 5.85 48.0

6 0.03 -0.435 5.86 27.7

0.1 -1.25 6.22 5.76
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Figure 3. Pole Singularities in the Complex-Frequency Plane for L/h 0.2
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Figure 4. Pole Singularities in the Complex-Frequency Plane for L/h -0.5003
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such as 0.5, it may happen that, for a certain pair of integers m and n ,

the following equality holds:

km = Pn (79)

In this event one finds a logarithmic divergence in equation (64) arising from
the exact vanishing of the argument of the function K or Y This

o 0

divergence nevertheless is not really there, and can be traced back to a

harmless term vanishing as e Zn c in the function M . It is introducedm

into the picture through the iterative scheme of equation (62) and the use of

k c as the first trial solution in equation (64). It can be easily avoided

by starting the iteration with a slightly different trial solution. An alter-

native procedure is to alter the ratio L/h by a small amount. For example,

the ratio L/h - 0.5 can be replaced by L/h - 0.5003 , thereby destroying

the equality (79).

For m - 1 to 6 and n of opposite parity to m , the equality is not

satisfied for L/h - 0.2. However, for L/h = 0.5 , equation (79) holds for

m - 1, 3 and 5 . For L/h - 0.8 , it holds for m - 4 . Accordingly, in the

numerical calculation, the last two simple values of L/h are changed slightly

to 0.5003 and 0.8003.

Even though no divergence really occurs, equation (79) still clearly

represents a condition of resonance and should lead to observable effects.

The resonance results from the equality of the wavelengths of certain charac-

teristic excitations on the cylinder and in the waveguide. Its effects are

cuite evident in figures 3 to 5. At precisely those values of m enumerated

in the preceding paragraph, the complex poles show a decided shift toward

the imaginary axis. This means that the corresponding natural modes of the

cvlinder are only weakly damped. Thus, under the excitation of a broadband

incident wave, the response of the cylinder will be predominantly in these

special modes.

All the results in tables 1 to 3 are of course obtained by using the

first-iterated solution of equation (62). The quality of this solution can

32



be measured by comparing the output value of a" with its input trial valuemk c . The tables show that these two values are very close. Specifically,

the calculated value of s"L/rc is very close to m . This agreement can be
m

taken as an indication of the reliability of the first-iterated solution.
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SECTION VIII

CONCLUSIONS

It is possible to draw a number of general conclusions from the specific

numerical results.

The effects of the simulator/test-object interaction are clearly seen

in figures 3 to 5. The locations of the poles in the complex-frequency plane,

corresponding to the natural modes of the current on the cylinder, are strongly

dependent on the length-to-separation ratio L/h . When L/h is small, the

dimensions of the simulator are much greater than those of the test object.

The simulator/test-object interaction is weak, at least for the lowest few

natural modes. For example, the distribution of the poles in figure 3 for

L/h - 0.2 is not substantially different from that in the case of a thin

cylinder in free space (ref. 3). As the ratio L/h is increased, the effects

of the interaction strengthen: the poles are shifted violently around. The

dependence of their movement on L/h , however, is not monotonic but rather

oscillatory and in the nature of resonances. For a given ratio L/h, modes

that satisfy the resonance condition (79) are heavily favored by the simulator/

test-object interaction, in the sense that they are only weakly damped. These

resonant cases are exemplified by the numerical results in figures 4 and 5.

The poles, however, are not sufficient in themselves to provide a complete

measure of the simulator/test-object interaction. The presence of the simulator

structure indroduces additional singularities into the complex-frequency plane.

For the parallel-plate bounded-wave simulator in this problem, these singularities

consist of an infinite number of branch cuts. The contribution from the branch

cuts must be considered if one is to obtain a full characterization of the simu-

lator/test-object interaction.

The numerical results of this study are based on an approximate, analytical

formula for the solution of an exact matrix equation. It will be worthwhile

to attempt an accurate, numerical solution of the matrix equation directly.

Such a solution is feasible with the availability of large, advanced computers.

It will not only provide accurate technical data, but will also represent a

valuable standard whereby the reliability of future analytical investigations

can be gauged.
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APPENDIX

THIN-CYLINDER LIMIT

In the thin-cylinder limit (a/L - 0) equation (62) can be shown to have

the simple solution s" = ± k cm m

By equation (45) the quantity c2  varies like n 4  for large n . Thus
nm

the contribution to the two sums in equation (62) comes mainly from terms of

small n Because of this property, one can replace the function W' by its• n

thin-cylinder limit at small n By equation (57) one has

W'(w) - - - n ( -) as - - 0 (Al)
n The \L L

n

Therefore equation (62) becomes

PV)2 

1 2 2s" =2 e- n nnm

n0  (A2)
c -

L- nn

ly equation (42) it can also be rewritten as

E0 nm

k k2 n= 0  nm

n-0 en nm

The two sums can be evaluated by invoking equations (38) and (40):

8 2 dz dz'cos k (z-b)cos k (z-b) 1 1 sin pnz sin pz'

0 n b n=O n

ILh
4
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W Lb L+b 0
2 AdtzjL " dr' sin k (z -b) sin k (z- b) Co ~CSn zCos p nZ'

n nO n M n-oEn

4Lh (A)

where use has been made of the identities

Z Lsin pZ zsin pZ z' 2~ '
nwo E:n n n 2

(A5)

Cos p z Cos p' =I h ~-'
n!o n 2

for b < z,z' < L+ b .Substituting equations (A4) into equation (A)one

obtains the simple result

s" t k c (A6)
M M
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